Capítulo 2. Cuestiones sobre redes TCP/IP (Manual Linux)


En este capítulo volveremos a las decisiones sobre configuración que se deben tomar cuando se conecta una máquina Linux a una red TCP/IP, incluyendo el tema de las direcciones IP, los nombres de los puestos, y cuestiones sobre el encaminamiento. Este capítulo le enseñerá lo que necesita saber para entender lo que su sistema requiere, mientras que los siguientes capítulos cubren las herramientas que serán necesacias.
Para aprender más acerca de TCP/IP y las razones de su uso, diríjase al tercer volumen del libro Internet-working with TCP/IP de Douglas R. Comer (Prentice Hall). Si busca una guía más detallada del control de una red TCP/IP, véa TCP/IP NetworkAdministration de Craig Hunt (O’Reilly).
Interfaces de red:
Para ocultar la diversidad de hardware que puede usarse en un entorno de red, TCP/IP define una interfaz
abstracta a través de la cual se accede a dicho hardware. Esta interfaz ofrece un conjunto de operaciones que son las mismas para todos los tipos de hardware y básicamente trata con el envío y la recepción de paquetes.
Tiene que estar presente en el núcleo la correspondiente interfaz para cada dispositivo periférico de red. Por ejemplo, las interfaces Ethernet se llaman en Linux con nombres como eth0 y eth1; las interfaces PPP (discutido en Capítulo 8) se denominan ppp0 y ppp 1; y a las interfaces FDDI se le da nombres como fddi0 y fddi1. Estos nombres de interfaz se usan para propósitos de configuración cuando se quiere especificar un dispositivo físico determinado en una orden de configuración, y no tienen significado más allá de este uso.
Antes de ser usada en una red TCP/IP, a una interfaz se le debe asignar una dirección IP que sirve como su identificador cuando se comunica con el resto del mundo. Esta dirección es distinta del nombre de interfaz mencionado anteriormente; si se compara una interfaz con una puerta, la dirección es como el número de la puerta.
Se pueden selecciónar otros parámetros de dispositivo como el tamaño máximo de los datagramas que pueden ser procesados por una parte del hardware determinada, a lo que se le denomina Maximum Transfer Unit (MTU). Hay otros atributos que se introducirán más tarde. Afortunadamente, la mayoría de esos atributos tienen valores por defecto muy acertados.
Direcciones IP
Como se menciona en Capítulo 1, el protocolo de red IP utiliza direcciones formadas por números de 32
bits. Se le debe asignar un número único a cada máquina del entorno de red.1 Si está haciendo funcionar una red local que no tiene tráfico TCP/IP con otras redes, puede asignar estos números de acuerdo con sus preferencias personales. Hay algunos rangos de direcciones IP que han sido reservadas para redes privadas. Estos rangos se listan en Tabla 2-1. De cualquier modo, los números para los sitios en Internet los asigna una autoridad central, el Network Information Center (NIC).2
Para facilitar la lectura, las direcciones IP se separan en cuatro números de ochos bits llamados octetos. Por ejemplo, quark.physics.groucho.edu tiene una dirección IP 0x954C0C04, que se escribe como 149.76.12.4. Este formato se denomina normalmente notación de puntos divisorios.
Otra razón para usar esta notación es que las direcciones IP se dividen en un número de red, que es contenido en el octeto principal, y un número depuesto, que es contenido en el resto. Cuando se solicita al NIC una dirección IP, no se le asignará una dirección para cada puesto individual que pretenda usar. En cambio, se le otorgará un número de red y se le permitirá asignar todas la direcciones IP válidas dentro de ese rango para albergar puestos en su red de acuerdo con sus preferencias.
El tamaño de la parte dedicada al puesto depende del tamaño de la red. Para complacer diferentes necesi-dades, se han definido varias clases de redes, fijando diferentes sitios donde dividir la dirección IP. Las clases de redes se definen en lo siguiente:
Clase A
La clase A comprende redes desde 1.0.0.0 hasta 127.0.0.0. El número de red está contenido en el primer octeto. Esta clase ofrece una parte para el puesto de 24 bits, permitiendo aproximadamente 1,6 millones de puestos por red.
Clase B
La clase B comprende las redes desde 128.0.0.0 hasta 191.255.0.0; el número de red está en los dos primeros octetos. Esta clase permite 16.320 redes con 65.024 puestos cada una.
Clase C
Las redes de clase C van desde 192.0.0.0 hasta 223.255.255.0, con el número de red contenido en los tres primeros octetos. Esta clase permite cerca de 2 millones de redes con más de 254 puestos.
Clases D, E, y F
Las direcciones que están en el rango de 224.0.0.0 hasta 254.0.0.0 son experimentales o están reser-vadas para uso con propósitos especiales y no especifican ninguna red. A IP Multicast, un servicio que permite trasmitir material a muchos puntos en una internet a la vez, se le ha asignado direcciones dentro de este rango.
Si volvemos al ejemplo del capítulo 1, encontraremos que 149.76.12.4, la dirección de quark, se refiere al puesto 12.4 en la red de clase B 149.76.0.0.
Habrá notado que no se permiten todos los valores posibles de la lista anterior para todos los octetos de la parte del puesto. Esto se debe a que los octetos 0 y 255 se reservan para propósitos especiales. Una dirección donde todos los bits de la parte del puesto son 0, se refiere a la red, y una dirección donde todos los bits de la parte del puesto son 1, se denomina dirección de difusión. Esta se refiere simultaneamente a todos los puestos de la red específica. Así, 149.76.255.255 no es una dirección de puesto válida, pero se refiere a todos los puestos en la red 149.76.0.0.
Alunas direcciones de red se reservan para propósitos especiales. 0.0.0.0 y 127.0.0.0 son dos de estas direcciones. La primera se denomina encaminamiento por defecto, y la segunda es la dirección loopback. El encaminamiento por defecto tiene que ver con el camino por el que el IP encamina los datagramas.
La red 127.0.0.0 está reservada para el tráfico local IP del puesto. Normalmente, la dirección 127.0.0.1 se asignará a una interfaz especial del puesto, la interfaz loopback, que actua como un circuito cerrado. Cualquier paquete IP enviado a esta interfaz por TCP o UDP le será devuelto a cualquiera de ellos como si simplemente hubiese llegado desde alguna red. Esto permite desarroyar y probar software de red aunque no se esté usando una red “real”. La red loopback también permite usar software de red en un puesto solitario. Puede que esto no sea tan infrecuente como parece; por ejemplo, muchos sitios UUCP no tienen conectividad con IP en absoluto, pero aún pueden querer ejecutar un sistema de noticias INN. Para unfun-cionamiento adecuado en Linux, INN requiere la interfaz loopback.
Algunos rangos de direcciones de cada una de las clases de red han sido reservados y designados como rangos de direcciones “reservadas” o “privadas”. Estas direcciones están reservadas para el uso de redes privadas y no son encaminadas en Internet. Son usadas normalmente por organizaciones con su propia intranet, pero incluso las redes pequeñas suelen encontrarlas útiles.

Califica este Artículo
0 / 5 (0 votos)

Categoría: Conectividad y Redes.




Deja un comentario