Descripción del enrutamiento


La función de enrutamiento es una función de la Capa 3 del modelo OSI. El enrutamiento es un esquema de organización jerárquico que permite que se agrupen direcciones individuales. Estas direcciones individuales son tratadas como unidades únicas hasta que se necesita la dirección destino para la entrega final de los datos. El enrutamiento es el proceso de hallar la ruta más eficiente desde un dispositivo a otro. El dispositivo primario que realiza el proceso de enrutamiento es el Router.

Las siguientes son las dos funciones principales de un Router:

– Los Routers deben mantener tablas de enrutamiento y asegurarse de que otros Routers conozcan las modificaciones a la topología de la red. Esta función se lleva a cabo utilizando un protocolo de enrutamiento para comunicar la información de la red a otros Routers.

– Cuando los paquetes llegan a una interfaz, el Router debe utilizar la tabla de enrutamietno para establecer el destino. El Router envía los paquetes a la interfaz apropiada, agrega la información de entramado necesaria para esa interfaz, y luego transmite la trama.

Un Router es un dispositivo de la capa de red que usa una o más métricas de enrutamiento para determinar
cuál es la ruta óptima a través de la cual se debe enviar el tráfico de red. Las métricas de enrutamiento son
valores que se utilizan para determinar las ventajas de una ruta sobre otra. Los protocolos de enrutamiento
utilizan varias combinaciones de métricas para determinar la mejor ruta para los datos.

Los Routers interconectan segmentos de red o redes enteras. Pasan tramas de datos entre redes basándose en la información de Capa 3. Los Routers toman decisiones lógicas con respecto a cuál es la mejor ruta para la entrega de datos. Luego dirigen los paquetes al puerto de salida adecuado para que sean encapsulado para la transmisión. Los pasos del proceso de encapsulamiento y desencapsulamiento ocurren cada vez que un paquete atraviesa un router. El router debe desencapsular la trama de capa 2 y examinar la dirección de capa 3. Como se muestra en la figura , el porceso completo del envío de datos de un dispositivo a otro comprende encapsulamiento y desencapsulamiento de las siete capas OSI. Este proceso divide el flujo de datos en segmentos, agrega los encabezados apropiados e información final y luego transmite los datos. El proceso de desencapsulamiento es el proceso inverso: quita los encabezados e información final, y luego combina los datos en un flujo continuo.

Este curso se concentra en el protocolo enrutable más común, el protocolo de Internet (IP) Otros ejemplos de protocolos enrutables incluyen IPX/SPX y AppleTalk. Estos protocolos admiten la Capa 3. Los protocolos no enrutables no admiten la Capa 3. El protocolo no enrutable más común es el NetBEUI. NetBeui es un protocolo pequeño, veloz y eficiente que está limitado a la entrega de tramas de un segmento

El enrutamiento en comparación con la conmutación

A menudo, se compara el enrutamiento con la conmutación. Un observador inexperto puede pensar que el enrutamiento y la conmutación cumplen la misma función. La diferencia básica es que la conmutación tiene lugar en la Capa 2, o sea, la capa de enlace de los datos, en el modelo OSI y el enrutamiento en la Capa 3. Esta diferencia significa que el enrutamiento y la conmutación usan información diferente en el proceso de desplazar los datos desde el origen al destino.

La relación entre la conmutación y el enrutamiento es comparable con la relación entre las comunicaciones
telefónicas locales y de larga distancia. Cuando se realiza una comunicación telefónica a un número dentro de un mismo código de área, un Switch local administra la llamada. Sin embargo, el Switch local sólo puede llevar registro de sus propios números locales. El Switch local no puede administrar todos los números telefónicos del mundo. Cuando el Switch recibe un pedido de llamada fuera de su código de área, transfiere la llamada a un Switch de nivel superior que reconoce los códigos de área. El Switch de nivel superior entonces transfiere la llamada de modo que finalmente llegue al Switch local del código de área marcado. El Router tiene una función parecida a la del Switch de nivel superior en el ejemplo del teléfono. La figura muestra las tablas ARP de las direcciones MAC de Capa 2 y las tablas de enrutamiento de las direcciones IP de Capa 3. Cada interfaz de computador y de Router mantiene una tabla ARP para comunicaciones de Capa 2. La tabla ARP funciona sólo para el dominio de broadcast al cual está conectada.. El Router también mantiene una tabla de enrutamiento que le permite enrutar los datos fuera del dominio de broadcast. Cada componente de la tabla ARP contiene un par de direcciones IP-MAC (en el gráfico las direcciones MAC están representadas por la sigla MAC, debido a que las direcciones verdaderas son demasiado largas y no caben en el gráfico). Las tablas de enrutamiento también registran cómo se informó la ruta (en este caso ya sea directamente conectada [C] o informada por RIP [R]), la dirección IP de red de las redes alcanzables, el número de saltos o distancia hasta dichas redes, y la interfaz por la que los datos deben enviarse para llegar a la red de destino.

Los switches Capa 2 construyen su tabla usando direcciones MAC. Cuando un host va a mandar información a una dirección IP que no es local, entonces manda la trama al router más cercano., también conocida como su Gateway por defecto. El Host utiliza las direcciones MAC del Router como la dirección MAC destino.

Un switch interconecta segmentos que pertenecen a la misma red o subred lógicas. Para los host que no son locales, el switch reenvía la trama a un router en base a la dirección MAC destino. El router examina la dirección destino de Capa 3 para llevar a cabo la decisión de la mejor ruta. El host X sabe la dirección IP del
router puesto que en la configuración del host se incluye la dirección del Gateway por defecto.

Únicamente un switch mantiene una tabla de direcciones MAC conocidas, el router mantiene una tabla de
direcciones IP. Las direcciones MAC no están organizadas de forma lógica. Las IP están organizadas de manera jerárquica. Un switch soporta un número limitado de direcciones MAC desorganizadas debido a que
sólo tiene que buscar direcciones MAC que están dentro de su segmento. Los Routers necesitan administrar un mayor volumen de direcciones. Entonces, los Routers necesitan un sistema de direccionamiento organizado que pueda agrupar direcciones similares y tratarlas como una sola unidad de red hasta que los datos alcancen el segmento destino. Si las direcciones IP no estuvieran organizadas, Internet simplemente no funcionaría. Sería como tener una biblioteca que contiene una pila enorme con millones de páginas sueltas de material impreso. Este material resultaría inútil porque sería imposible ubicar un documento en particular. Si las páginas están organizadas en libros y cada página está individualizada, y además los libros están registrados en un índice, es mucho más sencillo ubicar y utilizar la información.

Otra diferencia entre las redes conmutadas y enrutadas es que las redes conmutadas no bloquean los broadcasts. Como resultado, los Switches pueden resultar abrumados por las tormentas de broadcast. Los Routers bloquean los broadcasts de LAN, de modo que una tormenta de broadcast sólo afecta el dominio de broadcast de origen. Debido a que los Routers bloquean broadcasts, pueden brindar un mayor nivel de seguridad y control de ancho de banda que los Switches.

Enrutado comparado con enrutamiento

Los protocolos usados en la capa de red que transfieren datos de un Host a otro a través de un Router se
denominan protocolos enrutados o enrutables. Los protocolos enrutados transportan datos a través de la red. Los protocolos de enrutamiento permiten que los Routers elijan la mejor ruta posible para los datos desde el origen hasta el destino.

Las funciones de un protocolo enrutado incluyen lo siguiente:

– Incluir cualquier conjunto de protocolos de red que ofrece información suficiente en su dirección de capa para permitir que un Router lo envíe al dispositivo siguiente y finalmente a su destino.

– Definir el formato y uso de los campos dentro de un paquete.

El Protocolo Internet (IP) y el intercambio de paquetes de internetworking (IPX) de Novell son ejemplos de
protocolos enrutados. Otros ejemplos son DECnet, AppleTalk, Banyan VINES y Xerox Network Systems
(XNS).

Los Routers utilizan los protocolos de enrutamiento para intercambiar las tablas de enrutamiento y compartir la información de enrutamiento. En otras palabras, los protocolos de enrutamiento permiten enrutar
protocolos enrutados.

Las funciones de un protocolo de enrutamiento incluyen lo siguiente:

– Ofrecer procesos para compartir la información de ruta.

– Permitir que los Routers se comuniquen con otros Routers para actualizar y mantener las tablas de enrutamiento.

Los ejemplos de protocolos de enrutamiento que admiten el protocolo enrutado IP incluyen el Protocolo de
información de enrutamiento (RIP) y el Protocolo de enrutamiento de Gateway interior (IGRP), el Protocolo
primero de la ruta libre más corta (OSPF), el Protocolo de Gateway fronterizo (BGP), el IGRP mejorado (EIGRP).

Determinación de la ruta

La determinación de la ruta ocurre a nivel de la capa de red. La determinación de la ruta permite que un Router compare la dirección destino con las rutas disponibles en la tabla de enrutamiento, y seleccione la mejor ruta. Los Routers conocen las rutas disponibles por medio del enrutamiento estático o dinámico. Las rutas configuradas de forma manual por el administrador de la red son las rutas estáticas. Las rutas aprendidas por medio de otros Routers usando un protocolo de enrutamiento son las rutas dinámicas. El Router utiliza la determinación de la ruta para decidir por cuál puerto debe enviar un paquete en su trayecto al destino. Este proceso se conoce como enrutamiento del paquete. Cada Router que un paquete encuentra a lo largo del trayecto se conoce como salto. El número de saltos es la distancia cubierta. La determinación de la ruta puede compararse a una persona que conduce un automóvil desde un lugar de la ciudad a otro. El conductor tiene un mapa que muestra las calles que puede tomar para llegar a su destino, así como el Router posee una tabla de enrutamiento. El conductor viaja desde una intersección a otra al igual que un paquete va de un Router a otro en cada salto. En cualquier intersección el conductor determinar su ruta al ir hacia la izquierda, la derecha, o avanzar derecho. Del mismo modo, un Router decide por cuál puerto de salida debe enviarse un paquete.

Las decisiones del conductor se ven influenciadas por múltiples factores como el tráfico en la calle, el límite de velocidad, el número de carriles, si hay peaje o no, y si esa ruta se encuentra cerrada o no con frecuencia. A veces es más rápido tomar un recorrido más largo por una calle más angosta y menos
transitada que ir por una autopista con mucho tránsito. De la misma forma, los Routers pueden tomar
decisiones basándose en la carga, el ancho de banda, el retardo, el costo y la confiabilidad en los enlaces de red.

Se utiliza el siguiente proceso durante la determinación de la ruta para cada paquete que se enruta:

– El router compara la dirección IP del paquete recibido contra las tablas que tiene.

– Se obtiene la dirección destino del paquete .

– Se aplica la máscara de la primera entrada en la tabla de enrutamiento a la dirección destino.

– Se compara el destino enmascarado y la entrada de la tabla de enrutamiento.

– Si hay concordancia, el paquete se envía al puerto que está asociado con la entrada de la tabla.

– Si no hay concordancia, se compara con la siguiente entrada de la tabla.

– Si el paquete no concuerda con ninguno de las entradas de la tabla, el Router verifica si se envió una ruta por defecto.

– Si se envió una ruta por defecto, el paquete se envía al puerto asociado. Una ruta por defecto es aquella que está configurada por el administrador de la red como la ruta que debe usarse si no existe concordancia con las entradas de la tabla de enrutamiento.

– El paquete se elimina si no hay una ruta por defecto. Por lo general se envía un mensaje al dispositivo emisor que indica que no se alcanzó el destino.

Califica este Artículo
4 / 5 (1 votos)

Categoría: Conectividad y Redes.




Deja un comentario